

种养结合、环农结合与农业绿色发展

刘鲁民

2023-10.14

青岛和协生物科技有限公司

从人民日报2023.10.23唐仁健部长文章说起

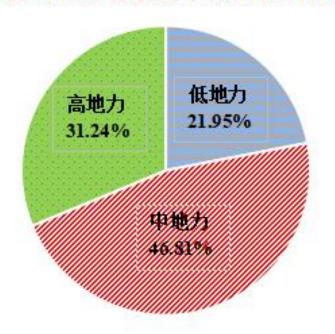
全力提升耕地质量着力夯实粮食安全根基

- •加力推进高标准农田建设
- •稳步推进黑土地保护
- •有序推进酸化耕地治理
- •扎实推进盐碱地改造利用
- •强化耕地质量支撑保障

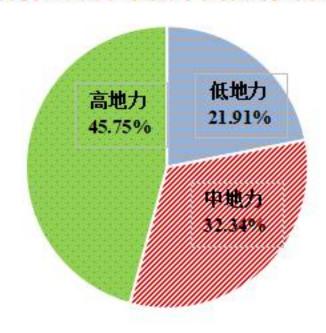
CONTENTS

- 11 农业、农村发展存在的突出问题
- 12 种养、环农结合与农业绿色发展
- 13 秸秆科学还田与地力提升

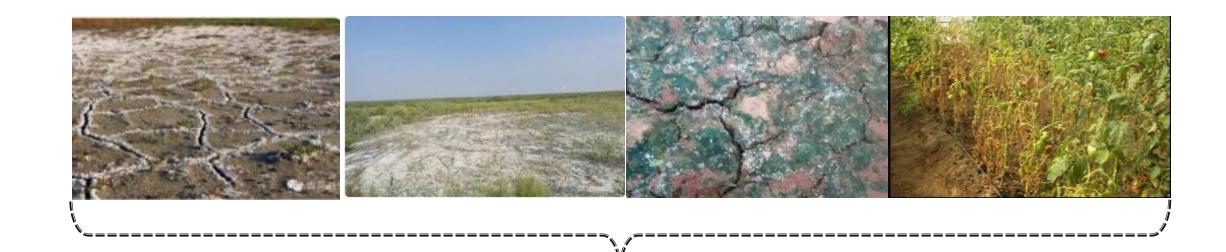
04 技术集成与攻关目标



①1 农业农村发展存在的突出问题


1.1山东耕地质量存在的主要问题

全国耕地地力等级高中低面积占比(2021年)


山东省耕地地力等级高中低面积占比(2021年)

- ▶ 我国耕地19.18亿亩,质量平均等级为4.76,中低产田面积占近69%,低产田(7~10等)占近22%;
- ▶ 山东省耕地0.977亿亩,质量平均等级为4.50,中低产田面积占近55%。

1.2 山东耕地质量存在的主要问题

1、盐碱地

2、土壤退化 (设施蔬菜次 生盐渍化)

3、土壤酸化

1.3 农业农村存在的环境问题

蔬菜秸秆、尾菜环境污染

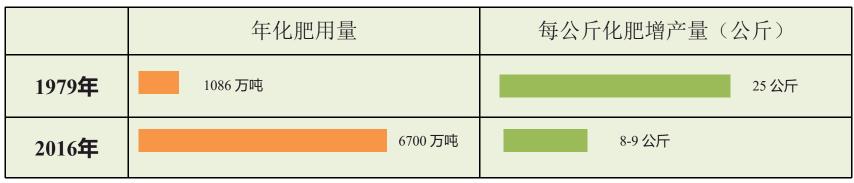
旱改厕人粪尿无法处置

畜禽粪便环境污染

秸秆/生粪直接还田危害

7亿吨秸秆、38亿吨畜禽粪便农业有机废弃物没有得到有效利用,严重影响美丽乡村建设和人居环境

1.4 农业施肥存在的问题


我国化肥施用强度是326 kg/hm², 国际建议安全施用量225 kg/hm²世界农作物化肥平均用量为120 kg/hm²

1.4.2农业施肥存在的问题

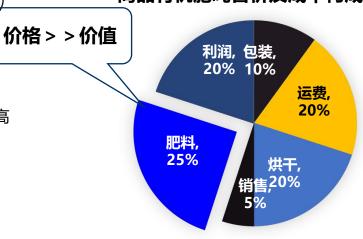
化肥投入、产出失衡

2020年我国水稻、玉米、小麦三大粮食作物化肥利用率为40.2%,仍比欧美低10%-20%。 氮肥、磷肥、钾肥当季利用率分别只有33%、24%和42%。欧美高标准农田有机质含量4-5%, 高的8%以上,农业生产50%以上的养份来自有机质,我国经济作物30%,粮食作物几乎全部 依赖化肥

1.5 现有解决方案——有机肥土壤改良存在的问题

商品有机肥土壤改良提升地力

── 贵! <mark>施用不便!</mark>


商品有机肥吨售价及成本构成

◆ 价格高、质量不可控

- 有机肥厂固定投资基建过高
- 有机肥过度加工、过度包装、远距离运输和销售,导致商品有机肥价格高
- •原料看不见、摸不着,甚至有污泥和垃圾
- •指标不可控,易出现重金属超标现象,普通消费者难以识别优劣
- 有机肥使用量大, 施用不便

秸秆生粪直接还田

- ◆ 两部委严令禁止畜禽粪污直接还田,强化监管
- ◆ 秸秆还田易致减产、植物病虫害
- ◆ 简单沤肥致使二次污染,加大人畜共患病风险

小结(1)

土壤障碍类型	面积 (万亩)	全省耕地面积 占比(%)	问题
中低产田	5300	54.3	肥力低、营养元素缺乏;质地粗/粘/砂;
盐碱地	891	9.1	盐:土壤含盐量高;板:通透性差;瘦:氮磷中微量元素缺乏;
设施菜地退化	293	3.0	土壤酸化、盐渍化、连作危害、养分不平衡、重金属污染;
酸化土壤	600	6.1	酸: pH < 5.5; 养分贫瘠,肥力降低; 潜在重金属污染;

- 山东省耕地面积的54.3%为中低产田,其中盐碱地、设施菜地退化、酸化土壤等占比近35%;
- ▶ 盐、酸、板、瘦、弱的土壤质量现状,严重威胁我省耕地质量提升和农业绿色高效发展;

习近平总书记提出:"耕地红线不仅是数量上的,也是质量上的"

山东省土壤质量和产能提升刻不容缓!

小结(2)

高标准农田建设通则(GB30600-2022)

项目

地力指标

耕作层

25公分以上

有机质

平原大于15 g/kg、丘陵大于12 g/kg

土壤pH、盐分

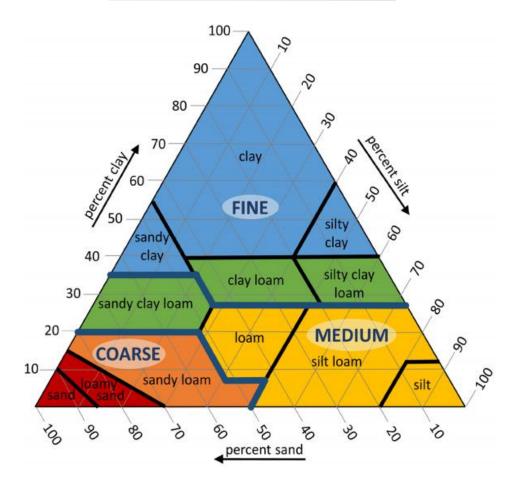
pH6.0~7.5; 盐碱区小于≤8.5、盐分≤0.3%; 养分比例适宜作物生长

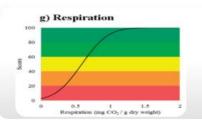
产量水平

小麦>450 kg/亩、玉米>490 kg/亩

耕地质量等级

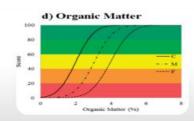
>4级

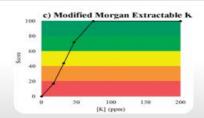

(耕地质量培育技术与模式, 2013)



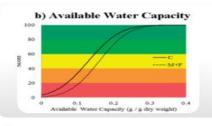
- ▶能提供足够水平的大中微营养元素;
- ▶ 有良好的结构,提供足够的通风和水分;
- ▶土壤维持高和多样化的有益生物种群和低害虫和病原体种群;
- ▶土壤盐分水平低,潜在有毒元素(如硼、锰和铝)水平低;
- ▶土壤具有高弹性,能够抵御逆境。

健康的土壤

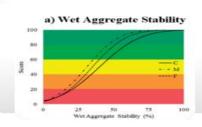

良好的土壤质地


生物多样性丰富

- •生物活性高
- •物种丰富


高碳存储量

- •有机质含量高
- •固碳能力好


养分循环

• (NPK) 养分有效性

持水性好

- •田间持水量高
- •有效含水量大

稳定的物理结构

- •容重小
- •团粒结构稳定

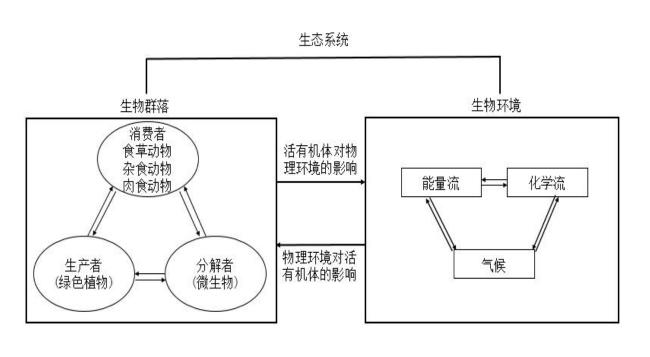
(Comprehensive Assessment of Soil Health Laboratory, 2016)

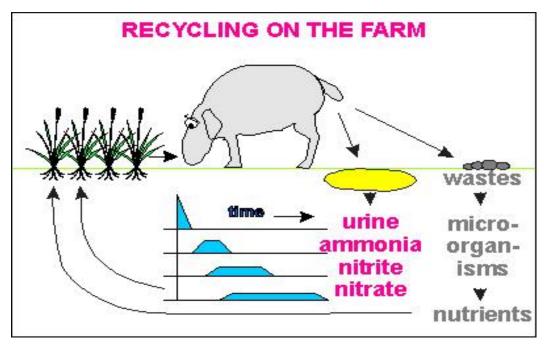
02 种养、环农结合与生态农业

2.1 我国农业发展历程

1980年以前:传统农业,粮 食短缺(短缺经济);有机 肥为主,化肥为辅。

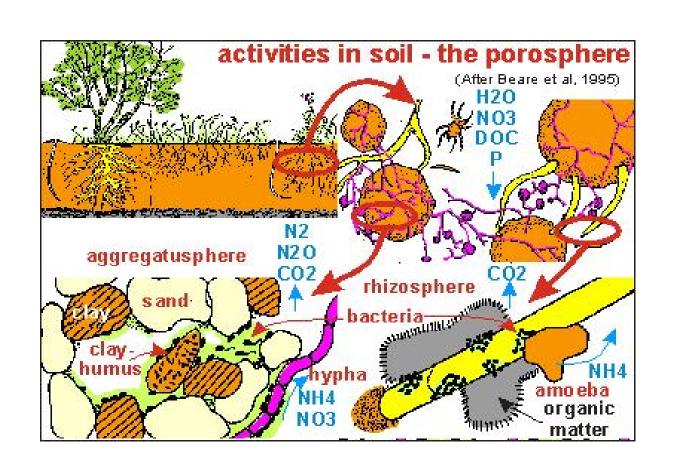
1980年~2010年: 化学农业,粮食丰富(解决温饱); 化肥为主,有机肥为辅; 土壤问题、环境问题、农产品质量安全逐渐显现。

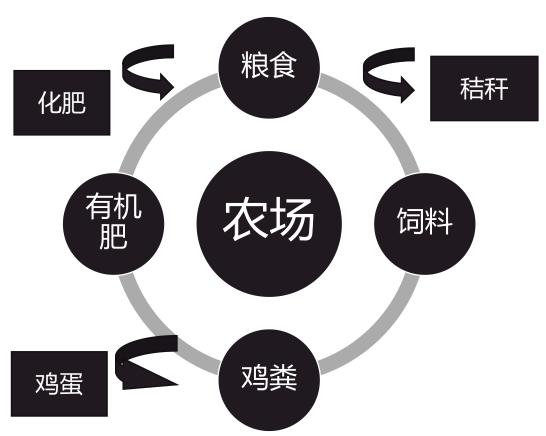

2010年以后:提出"可持续农业"。


2016年提出"绿色农业、生态农业"发展理念,农产品要优质、营养,农业要提质增效;"减肥(药)增效、稳产增效、绿色高效、提质增效"。

2.2 种养、环农结合与生态循环农业模式

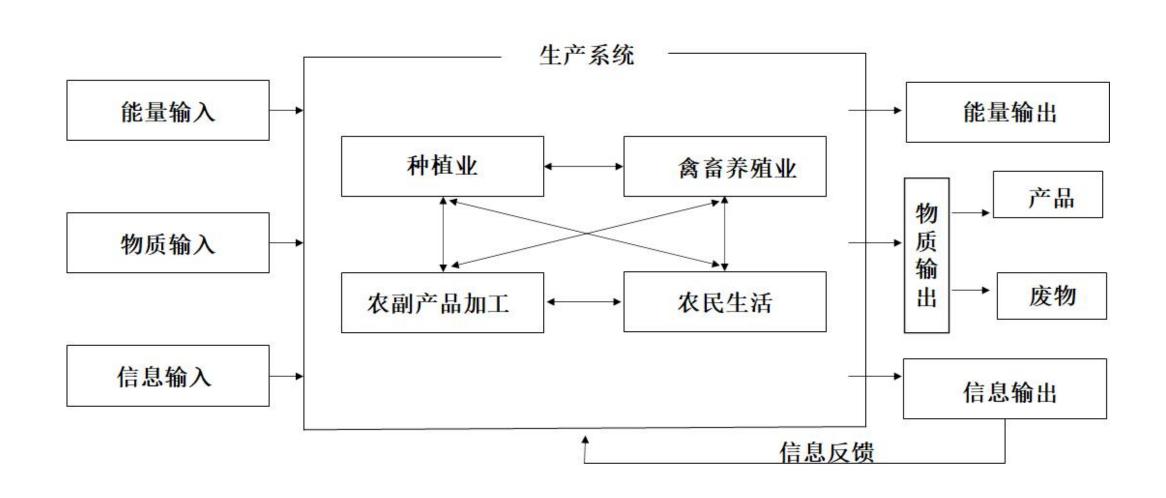
生态循环的基本概念



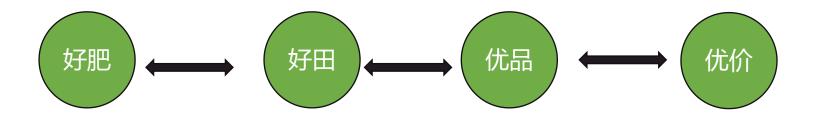


- 生态系统就是生命系统和环境系统在特定空间的组合
- 在生态系统中,物质从物理环境开始,经生产者、消费者和分解者,又回到物理环境,完成一个由简单无机物到各种高能有机化合物,最终又还原为简单无机物的生态循环。
- 通过该循环, 生物得以生存和繁衍, 物理环境得到更新并变得越来越适合生物生存的需要。

2.3 种养、环农结合与生态循环农业模式

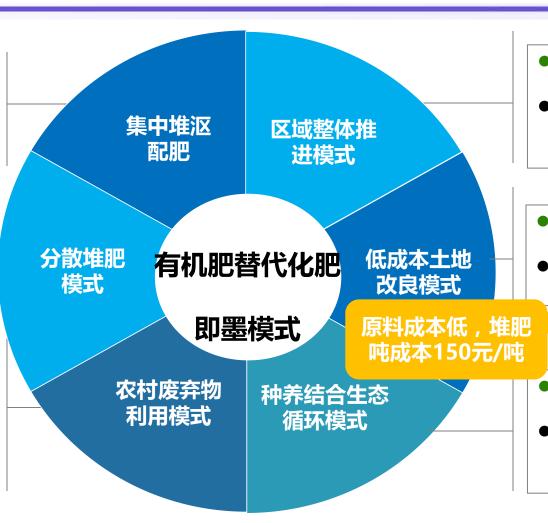


2.4 种养、环农结合与生态循环农业模式



农业清洁生产运行模式(熊文强, 2009)

2.5 我们的理念——以县为整体


- 种养、环农结合构建动态生态平衡农业
- 就地消纳, 提高当地耕地质量和土壤肥力
- 提质增效,有机肥消纳与提高农产品质量相结合
- •绿色消费,优质优价、市场拉动

2.6 适合多种农业经营主体的即墨模式

- 不具备堆沤条件的实施主体,由和协生物集中堆沤,经第三方检测机构检测合格后,统一配送至实施主体田间地头
- 自有原料和场地的实施主体实施分散 堆沤,总实施面积2500亩,由和协生 物提供高温腐熟剂及堆沤技术,并负 责全程堆沤指标监控,为自家及周边 农户提供堆沤肥
- 鳌角石村,重点探索农村秸杆、畜禽粪便、旱改厕人粪尿等有机废弃物就地就近无害化处理、资源化利用途径

- 七级社区,对社区内的尾菜、秸秆、畜 禽粪便、人粪尿等统一规划,集中处理
- 农业局整体监管、和协生物提供技术及设备、七级社区参与、社区环卫站具体运营及实施
- 果香天下生态农业,利用当地畜禽粪便、 粮食糠壳及农场有机废弃物进行堆沤
- 自堆自用、吃肥成本 < 150元,低成本 改良气

即发集团,养生猪400头、各类种植 1600亩

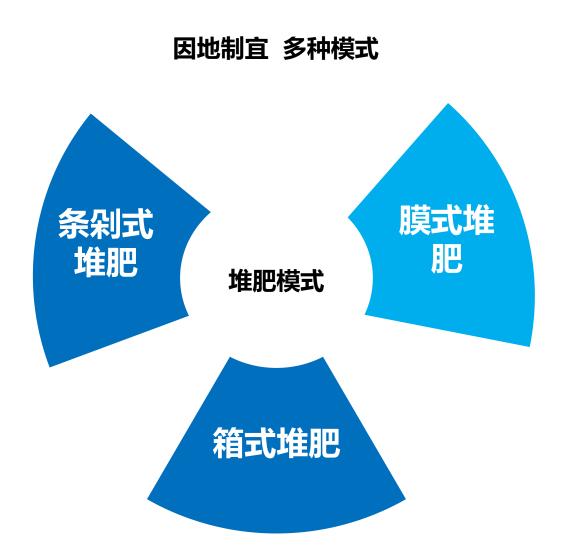
最大限度的利用有机废弃物资源,减少 化学品投入,好肥养好地,好地产好品, 好品卖好价

正常购买原料情况下,吨堆肥成本在250元左右

2.2.1有机垃圾资源化利用"N+1"模式

实施地点:青岛市莱西市日庄镇

实施理念: "N+1"模式,N是N个社区垃圾分类处理中心,包括一个二次分拣中心,若干个好氧快速无臭堆肥箱。垃圾在分类中心经过初级无害化处理,可以直接原位消纳,多余或未完全彻底处理部分也可集中到1,集中统一处理并把好质量检测关。1也可以为N提供技术支持和辅料服务。村庄通过这种模式,可以将分选后的厨余垃圾、作物秸杆、尾菜剩饭等有机湿垃圾进行初步好氧发酵实现无害化后,集中到日庄镇生态科技示范园进行后加工生产生物多效有机肥。把美丽乡村建设中农村环境保护与土壤地力恢复与提升,减肥减药与农产品质量提升有机结合,实现环保与绿色种植生态循环。


技术简介:

- 一、高温好氧发酵生物多效堆肥技术:以厨余垃圾、秸秆以及菌渣等有机废弃物为原料,接种好氧微生物菌剂,使发酵物料迅速升温至60℃以上并持续5~10天,有效杀灭病原菌、杂草种子、虫卵等,并产生大量的有益菌群,使物料达到稳定化和无害化,并添加解磷、解钾、防病微生物菌剂等,生产生物多效堆肥。
- 二、生物除臭技术: 厌氧微生物菌剂的发酵争夺营养,并利用发酵过程中产生有机酸、微生物菌剂等抑菌物质,有效抑制病原微生物菌剂的生长繁殖,安全、环保、低成本除臭。
- 三、菌剂扩繁与酵素制作技术:选用繁殖能力、抗杂菌污染能力强的乳酸菌、酵素菌和光合细菌等现场扩繁,使这些微生物的使用成本降低80%以上,利用乳酸菌添加少量酶制剂还可以将落果残果、尾菜、餐余废弃物制作成液体生物酵素肥,用于喷施和滴灌,达到防病促生长提高产品品质的目的。

2.3生物多效堆肥简易技术模式

2.3.3堆肥箱——青岛即墨移风店

有机垃圾资源化利用项目

实施地点:青岛市即墨区移风店镇中间埠

实施理念: "N+1"模式,利用多功能堆肥箱,将分选后的厨余垃圾、作物秸杆、尾菜剩饭等有机湿垃圾进行初步好氧发酵实现无害化后,集中到移风店镇农业生态科技示范园进行后加工生产生物多效堆肥。把美丽乡村建设中农村环境保护与土壤地力恢复与提升,减肥减药与农产品质量提升有机结合,实现环保与绿色种植生态循环。

相关技术: 高温好氧发酵生物多效堆肥技术 生物除臭技术

技术简介:

一、高温好氧发酵生物多效堆肥技术:以厨余垃圾、秸秆以及菌渣等有机废弃物为原料,接种好氧微生物菌剂,使发酵物料迅速升温至 60° 以上并持续5~10 天,有效杀灭病原菌、杂草种子、虫卵等,并产生大量的有益菌群,使物料达到稳定化和无害化,并添加解磷、解钾、防病微生物菌剂等,生产生物多效堆肥。

二、生物除臭技术: 高活性厌氧微生物快速生长过程中,争夺厨余垃圾中的有机质成分,并 产生大量有机酸、微生物菌体等抑菌物质,不仅从源头上实现有机垃圾的减量,还能有效抑制有害、 产异味微生物生长繁殖,达到安全、环保、有效除臭的效果。

技术指导单位: 即墨区移风店镇人民政府 青岛和协生物科技有限公司

厨余垃圾

堆肥配送及撒施

配送到地头

机械撒施

03

秸秆科学还田

行业痛点

农作物秸秆是我国农业最重要的副产品,年产7亿多吨,近年来出现了严重的"地域性、季节 性、结构性"过剩。

就地还田

影响后茬作物出苗;造成土壤孔 环境污染;资源浪费,每年损失 收运成本高;仓储占地大;产品 洞:土壤病虫害。

丟弃、焚烧

超过300亿元。

收集-仓储-再利用

效益低。

- ◆ 国内外均缺乏可以就地处理秸秆资源的机械,造成秸秆利用率低下。
- ◆ 秸秆资源处理的就地化、简易化与压缩储运化、加工增值化成为行业发展的突破点。

3.1.1 解决措施--青岛市秸秆还田项目

即墨区2021、2022年秸秆综合利用重点县项目

莱西市2022年秸秆综合利用重点县项目

- 秸秆精细还田 6.7 万亩
- 秸秆堆肥还田 2.8 万吨

活杆还田 指杆还田 堆沤腐熟还田

3.1.1 解决措施--秸秆精细粉碎深翻还田

玉米秸秆机械粉碎还田腐熟技术模式

该技术模式通过机械化操作,将作物秸秆粉碎处理,并添加秸秆腐熟剂后直接翻入土壤,适用作物为玉米。

- 1、玉米机收、秸秆粉碎。
- 玉米成熟后,采用联合收获机械边收获玉米穗边切碎秸秆10厘米左右,使其均匀覆盖地表。
- 2、施用秸秆腐熟剂和速效氮肥、翻地。
- 按每亩2公斤秸秆腐熟剂用量,将腐熟剂与3~5公斤尿素混匀后均匀地撒在作物秸秆上。
- 3、机械深翻还田。
- 深翻要求 100 马力以上大马力拖拉机带动铧式犁作业,深翻深度 30 cm 以上,如有条件利用雨水或灌溉水使土壤保持较高的湿度,达到快速腐烂的效果。
- 4、田间管理。
- 秸秆翻入土壤后,如果墒情不好需浇水调节土壤含水量。注意田间管理,及时追肥、除草,防治病虫害。

撒施腐熟剂

深翻

撒施尿素

3.1.2 秸秆腐熟效果跟踪

玉米秸秆在一个种植季可完全腐熟降解

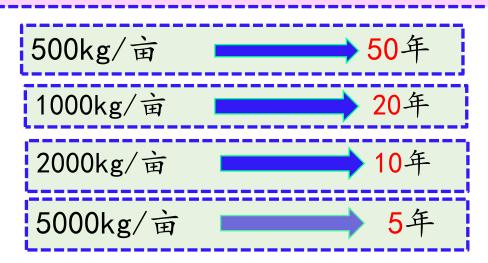
编号	腐熟剂	腐熟剂数量(kg/亩)
对照	<u> </u>	<u> </u>
处理 1	2×10^8 cfu/g	2
处理 2	2×10^8 cfu/g	4
处理3	50×10^8 cfu/g	2

3.1.3 秸秆离田堆沤还田

3.1.3 秸秆离田堆沤还田

山东省城乡生活垃圾分类工作现场观摩会

3.1.4 2021年农业部秸秆综合利用即墨秸秆成肥现场会



秸秆科学还田-核心技术1:秸秆高量还田技术

根据前期试验数据估算, 若要耕层土壤有机质含量提高1个百分点, 秸秆颗粒肥年还田量:

黑龙江试验表明,秸秆颗粒连续三年5t/亩还田,0-60 cm土壤总碳增加0.34个百分点,相当于增加土壤有机质0.586个百分点。预计第5年可增加土壤有机质含量1个百分点。

只有高量还田,才能持续、快速提高地力。而高量还田只能通过秸秆颗粒化还田才能实现。因此, 秸秆颗粒化是解决秸秆安全还田、耕地培肥的"卡脖子"技术。

秸秆培肥有机质提升量(OL)=秸秆还田量(ΣS)×秸秆中可转化有机质含量(OM)×有机质转化率(CR)

- 其中:
- 秸秆中可转化有机质含量按照40%计算;有机质转化率按16%计算。

3.3 要提高土壤有机质1%,每亩需要施加多少有机物料?

每亩土地面积按667m²计算,土层厚度按25cm计算,土壤干容重按1.3 t/m³计算, 1亩地土壤干重是217吨;要将土壤有机质提高1%,每亩需要施用纯干有机物料 2.17吨。

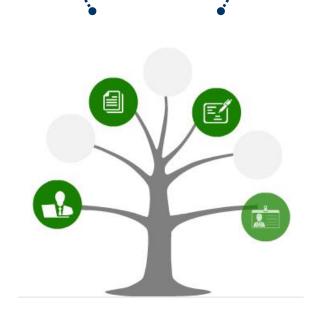
物料种类	有机质含量%	物料含水%	亩用量 吨
商品有机肥	30	30	10. 33
鸡粪	25	45	15. 78
羊粪	25	33	12. 96
草本泥炭	65	45	6. 07
木本泥炭	85	45	4. 64
藓本泥炭	92	45	4. 29

要提高土壤腐殖质含量1%,需要多少有机物料?

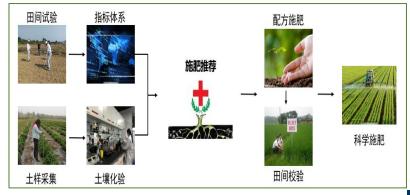
物料种类	腐殖酸含量%	物料水分%	亩用量 吨
商品有机肥	5	30	62.0
鸡粪	5	45	78.9
羊粪	5	35	66.7
草本泥炭	40	45	9.8
木本泥炭	65	45	6.1
藓本泥炭	30	45	13.2

土壤腐殖质占土壤有机质的80-90%,是土壤有机质的稳定态有机质

04


技术集成与攻关目标

4.1 土壤地力提升集成与创新方案

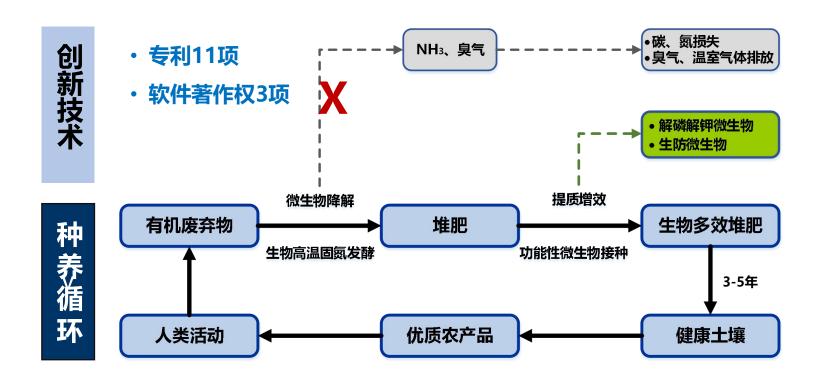

生物多效堆肥技术

农用微生物菌剂现场扩繁技术

土壤诊断与套餐施肥

优质栽培技术

4.2高品质堆肥产品


堆肥成品肥添加功能性微生物菌剂

有机废弃物资源化的根本性变革

4.4土壤改良与地力提升---核心技术2:农用微生物菌剂现场扩繁技术

农产品质量提质增效关键环节

4.5 土壤改良与地力提升---试验地块

地点:即发农业产业园

时间:2011年-2020年

实施:生物堆肥+酵素

土壤改良6季后指标变化

项目	2011	2014	
有机质	1.46-1.86%	3.36-5.56%	
碱解氮	127-147mg/kg	421-657mg/kg	
全磷	79-94.5mg/kg	327-414.4mg/kg	
速效钾	131-164mg/kg	483.2-486.4mg/kg	

沼泽地砂浆 黑土

高有机质优质 土壤

4.6 土壤改良与地力提升---试验地块

2011年秋季到2014年春季大量施有机堆肥改土,2014年秋季开始降低肥料投入

土壤改良6季后,肥料投入降为之前的20%。

10年土壤改良:

有机质含量有机质含量1.46-1.86提高到3.62-5.56%

70 1 3 5 T				
年	份	肥料(元/棚)	占总投入%	总投入(元/棚)
	春季	792	14.6	5650.24
2011	秋季	2316.01	20.83	11628.92
2242	春季	平均2235元/棚	23.59	9293.19
2012	秋季	2626.43	25.61	10690.2
	春季	2761.59	22.5	12832.78
2013	秋季	1962.56	15.08	12997.59
2014	春季	1606.1	12.54	12603.88
	秋季	586.82	5.72	10319.38
	春季	676.94	4.78	13993.83
2015	秋季	321.64	2.83	11640.66
	春季	平均440元/棚	3.19	12786.7
2016	秋季	331.76	2.68	12455.6
2017	春季	400.89	3.06	13421.55
	秋季	415.4	3.32	12518.86
2018	春季	402.44	3.3	12442.46
	秋季	391.6	3.02	12359.45
	总投入含所有生产资料、大棚折旧、租赁费、人工费。			

秸秆、堆肥科学还田:打造吨半粮田技术模式

集成推广优质高产高效生产技术

打造青岛"吨半粮田、黑土地"可持续高产能力

小麦玉米高产品种 良种 山东种业集团、山东农科院 藏 高产养地的可持续生态种植模式 粮于 中国农科院土壤耕作与种植制度创新 技 团队首席科学家逄焕成团队 良法 原农业部玉米专家指导组副组长赵明 藏 团队 (院士候选人) 粮于 山东小麦栽培首席专家王法宏团队 国家重点人才工程专家刘鲁民农业微 地 生物团队

第一年

集成种、技、机于 一体的生产模式 形成服务、推广结 合政策的可复制推 广模式

建设千亩示范工程

第二年

成立专业的社会化 服务公司,规模化 推广

模式 政府政策支持、产研院搭平台、科学家主导、社会化服务公司实施

两季粮食亩产3000斤,土壤有机质5年提升1%,化肥比传统高产田减少15%以上

谢

谢!

联系电话: 刘鲁民 博士 13953206308